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LETI'ER TO THE EDITOR 

Exact critical surface of the s-state Potts model with 
anisotropic interactions on the triangular and honeycomb 
lattices 

Theodore W Burkhardtt and B W Southern 
Institut Laue-Langevin, BP 156, Centre de Tri, 38042 Grenoble Cedex, France 

Received 7 August 1978 

Abstract. Exact expressions for the critical surfaces of paramagnetic-ferromagnetic tran- 
sitions for the s-state Potts model with anisotropic nearest-neighbour interactions on the 
triangular and honeycomb lattices are obtained. The derivation, which is based on the 
duality and star-triangle transformations and a uniqueness argument, is a generalisation of 
that given by Kim and Joseph for the isotropic case. 

In this Letter the s-state Potts model (Potts 1952) with anisotropic nearest-neighbour 
interactions on the triangular and honeycomb lattices is considered. The model has the 
Hamiltonian 

where the S is a Kronecker delta and the variables cri take the values 1 ,2 ,  . . . , s. By 
anisotropic interactions we mean that couplings Kij have different values K1, K2, K3 for 
the three distinct bond directions of the two lattices. For the case of isotropic 
ferromagnetic couplings Kim and Joseph (1974) have obtained exact expressions for 
the critical temperatures for the two lattices. Their derivation is based on the duality 
and star-triangle transformations and a uniqueness argument. In an earlier paper 
Stephen and Mittag (1972) pointed out that the star-triangle transformation can be 
applied at the duality point of the Potts model but did not give explicit formulae for the 
critical temperatures. 

We have generalised the derivation of Kim and Joseph to include anisotropic 
interactions and have obtained exact expressions for the critical surfaces of paramag- 
netic-ferromagnetic transitions for the two lattices in the variables K1, K2,  K3,  These 
expressions could prove useful in applying the differential real-space renormalisation- 
group equation of Hilhorst eta1 (19781, which has reproduced exact results for the Ising 
model, to the Potts model. This renormalisation equation generates anisotropic 
couplings, even if the initial couplings are isotropic. 

The derivation begins with the application of the standard duality transformation 
(Potts 1952, Kihara et a1 1954) to the Potts model on the triangular lattice with 
couplings Ka, Q = 1 , 2 , 3 ,  to obtain an equivalent Potts model on the honeycomb lattice 
with couplings ka. In terms of the variables xu = exp(Ka)- 1, 5 = exp(Ea)- 1 the 

t Present address: Institut fur Festkorperforschung der Kernforschungsanlage, D-517 Julich, FRG. 
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duality transformation has the form 

fu = S I X u .  (2 ) 
Next the star-triangle transformation (Wannier 1945, Syozi 1972, Kim and Joseph 

1974) is applied. It converts the honeycomb lattice to a triangular lattice with new 
nearest-neighbour couplings Kh and three-spin couplings of the form 
L’SQIuzSuzo3SQ1u3 for each elementary triangle of the lattice. Combining both trans- 
formations and introducing x &  = exp(K& ) - 1, y’ = exp(L’) - 1, one finds 

x &  = s x , / D  (3) 

, SZ(D - S ) X 1 X 2 X 3  

= (S + sxl) (S + s x z ) ( D  + s x 3 )  
(4) 

where 

D ( x 1 ,  X Z ,  ~ 3 ) =  x ~ x Z + X ~ X ~  + x ~ x ~ + x I x z x ~ .  ( 5  1 
The transformation equations (3)-(5) have a fixed surface ( x &  = xu,  y ’  = y = 0) with 

vanishing three-spin interaction for all xu satisfying 

D b i ,  X Z ,  x 3 ) = ~ .  (6 ) 
The fixed surface for s = 3 is shown in figure l(a).  It divides the space of physical 
couplings - 1 S x,  6 CD into the two domains D < s and D > s. 

We now argue on the basis of a uniqueness assumption that the fixed surface and the 
critical surface coincide. Note that the mapping defined by (3) preserves the ratios 
xa/xB,  i.e. the original point and its image lie on the same ray through the origin in x 
space. For simplicity we consider first of all the case of ferromagnetic couplings xu > 0. 
The mapping for a typical ray which intersects a point on the critical surface with all xu 
positive is shown schematically in figure 2(a). The radial coordinate r f  = 
( x  kZ + x i 2  + x 3  ) specifies the distance from the origin of a point on the ray. r* denotes 
the fixed point at which the ray intersects the fixed surface D = s. The segment y = 0, 

I2  112 

2pl 

Figure 1. The fixed surface D = s which coincides with the critical surface of paramagnetic- 
ferromagnetic transitions. s = 3.  

(a) Triangular lattice: the cross-hatched portions of the surface are regions where one 
of the x, (or K,) is negative. (6) Honeycomb lattice: the surface lies entirely in the region 
where all of the f, are positive. 
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Figure 2. Typical mappings for a ray through the origin in x space. 
( a )  The ray intersects the fixed surface at a point with radial coordinate r* and with all 

coupling constants positive. Critical lines not passing through y’ = 0, r ‘  = r* such as AB and 
CD are ruled out by the uniqueness assumption. ( b )  The ray intersects the fixed surface at 
points with radial coordinates rf and r ;  and with one negative coupling constant. We 
suspect that the critical line is similar to DE. 

O <  r < r* is mapped onto the curve r * A m  by the transformation and the line segment 
y = 0, r > r* onto the curve O C r * .  Following Kim and Joseph we argue that if there is a 
unique critical line in the variables y’,  r’, it must pass through the fixed point y’  = 0, 
r ’=  r* .  A critical line such as A B  is ruled out by the uniqueness assumption since it 
would imply two critical points on the r‘ axis, point B and the point to the left of r* which 
is mapped onto A by the transformation. Similar considerations rule out a critical line 
C D .  Only critical lines with negative slope need be considered, since an increase in the 
three-spin coupling must be compensated by a decrease in tyhe two-spin couplings to 
remain on the critical line. Thus we have shown that for ferromagnetic couplings the 
fixed surface D = s, y = 0 and the critical surface must coincide if a plausible uniqueness 
assumption is fulfilled. 

The critical surface we have considered thus far is clearly associated with the 
paramagnetic-ferromagnetic transition since it passes through the region of ferro- 
magnetic couplings K, > 0. We now consider whether the fixed surface D = s and the 
critical surface of paramagnetic-ferromagnetic transitions continue to coincide where 
all the couplings are not ferromagnetic. The cross-hatched portions of the fixed surface 
in figure l(a) indicate regions where one of the three K, is negative. Note that a ray 
through the origin in x-space which intersects the fixed surface at a point where one of 
the x, is negative necessarily intersects the fixed surface twice. A typical mapping for 
such a ray is shown schematically in figure 2(b).  rT and r: denote the fixed points at 
which the ray intersects the fixed surface D = s. The segment y = 0, a < r < b is mapped 
onto the upper curve Bryce and the segment y = 0, b < r < c onto the lower curve 
BrTm.  Other portions of the r axis are mapped onto the unphysical value of y ’  or r’ .  We 
are unable to construct as convincing an argument that the fixed surface and the critical 
surface must coincide as in the case considered above. If one assumes that the critical 
line in the variables y’, r’ intersects the r’ axis twice (i.e. that the critical surface has 
roughly the same plausible topological features as the fixed surface D = s), certain types 
of critical lines which do not pass through the fixed points y ’  = 0, r’ = r f  or r? can be 
ruled out. We strongly suspect that the critical line is similar to D E  in figure 2(b ) .  
However, we are unable to show that every critical line not passing through the fixed 
points violates the assumption of two critical points on the r’ axis. Despite the difficulty 
of extending the arguments given above in the case of all x, > 0, that the fixed surface 
and the critical surface of paramagnetic-ferromagnetic transitions continue to coincide 
in regions where one of the x,  is negative is almost certainly correct. It will be seen that 
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this assumption leads to obvious criteria for the existence of a phase transition with one 
negative coupling and to exact results for the Ising model in the limit s = 2. 

Expressed in terms of the K,  the critical surface for the triangular lattice defined by 
(6)  has the form 

eK1+K2+K3-(eK1+eK2+eK3)-(~ - 2 ) =  0. (7 1 
The critical surface for the honeycomb lattice, obtained by combining (2) and (6) ,  
satisfies D(s/fl, s / i 2 ,  s / f3 )=  s. This surface is shown in figure l(6). In terms of the z, 
the critical surface for the honeycomb lattice is given by 
e R 1 + R Z + R 3 -  (eRl+RZ+etZ+W3 +eR,+*,)- (s - l)(eRl +eR2+eR3)-(s2- 3s + 1) = 0. (8) 

Equations (7) and (8) reduce to known exact results in a number of special cases. For 
Kl = K 2  = K3 the results of Kim and Joseph for isotropic interactions are, of course, 
recovered. In the limit K3 = 0 (or k3 = CO) an exact expression for the critical surface of 
the Potts model on a square lattice with different horizontal and vertical bonds, which 
follows readily from the self-duality property of the square lattice, is reproduced. The 
two-state Potts model is identical with the king model. For s = 2 equations (7) and (8) 
reduce to Houtappel's (1950) exact formulae for the critical surfaces of the anisotropic 
Ising model on the triangular and honeycomb lattices. 

According to (7) there is a paramagnetic-ferromagnetic transition for the triangular 
lattice if and only if at least two of the coupling constants J, = ks TK, are positive and if 
in addition the J, satisfy the inequalities J I  +J2> 0, 5 2  +J3 > 0 ,  J I  +J3 > 0. These 
inequalities guarantee the stability of the ferromagnetic ground state (Eggarter 1975, 
Tanaka and UryCll978). 

For the honeycomb lattice stability of the ferromagnetic ground state requires that 
the inequalities J1 > 0, J2 > 0, J3 > 0 be satisfied. Equation (8) predicts a transition for 
each set of J, (see figure l(6)) consistent with these inequalities. If one of the couplings 
goes to zero, the system decomposes into a set of one-dimensional chains, and the phase 
transition ceases to occur. 

There are also surfaces in the region of all negative couplings which satisfy (7) and 
(8). Although we are unable to argue very convincingly on the basis of uniqueness 
assumptions that these surfaces must be critical surfaces, they reproduce exact results in 
the limit s = 2 when interpreted as such. The surface of negative couplings satisfying (7) 
only exists for s S 2. In the limit s = 2 it consists of the single point K1 = K 2  = K3 = --CO. 

This limit is consistent with the exact results of Houtappel(1950), according to which 
the king antiferromagnet on the triangular lattice has no phase transition at finite 
temperatures. There are two surfaces of negative couplings which satisfy (8). One of 
these exists for s S (3 + J 5 ) / 2  = 2.62 and the other for s d (3 - J 5 ) / 2  = 0.38. For s = 2 
the first of the surfaces agrees with exact results for the Ising model. In the case of the 
Ising model on the honeycomb lattice changing the sign of one or more of the J, changes 
the ground state but not the critical temperature (Houtappel 1950). The surface of 
negative couplings which satisfies (8) for s = 2 is simply the reflection of the surface of 
positive couplings through the origin in K space. That neither of the solutions of (8) 
with negative couplings exists for integer values of s larger than 2 is also quite plausible, 
since the ground state of the system is then infinitely degenerate rather than two-fold 
degenerate as for s = 2. 

We emphasise that we have not found all of the critical surfaces of the s-state Potts 
model for arbitrary signs of the coupling constants. For example, for s = 3 equation (7) 
describes the paramagnetic-ferromagnetic critical surface but not the critical surface of 
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the paramagnetic-antiferromagnetic transition of the three-state Potts model. This 
transition has a four-component rather than a t w o - c o m p e n t  order parameter and 
presumably belongs to a different universality class (Schick and Griffiths 1977). For 
s = 2 equations (7) and (8) have paramagnetic-antiferromagnetic solutions with all 
couplings negative as well as paramagnetic-ferromagnetic solutions. However, neither 
(7) nor (8) have solutions for s = 2 with two of the J, negative, although it is clear that 
the critical temperature is the same as if the sign of the two negative J, were reversed. 
For arbitrary signs of the coupling constants the combined duality and star-triangle 
transformations relate the free energies of the initial system and a system with 
transformed couplings which may be complex. However, the transformations only 
yield explicit expressions for the critical surface where there is a mapping across a fixed 
surface. The critical surfaces for s = 2 with two negative coupling constants are 
examples of phase boundaries which are not fixed under the transformations considered 
here. 

Note added in proof. Since this letter was accepted for publication, we have learned of a 
recent article (Baxter R J, Temperley H N V and Ashley S E 1978 Proc. R. Soc. A 358 
535-59) which contains similar results. 
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